SY17-4

高血圧の ゲノムワイド関連解析

竹内史比古・加藤規弘 国立国際医療研究センター(NCGM)研究所

http://www.fumihiko.takeuchi.name

第41回日本高血圧学会総会 2018.09.16 @旭川

CO I 開示

発表者名:竹内 史比古、加藤 規弘

演題発表に関連し、発表者らに開示すべき COI関係にある企業などはありません。

• 東アジア人の血圧ゲノムワイド関連解析

- BBJ, CAGE-Amagasaki, CAGE-GWAS1, CAGE-KING, Ehime, BES, CHNS, CLHNS, GenSalt, HEXA, KARE, NHAPC, SCES, SCHS, SP2, SiMES, ToMMo, TWSC, Vanderbilt, living-biobank
- ICBP, iGEN-BP, CKB, UK Biobank

ゲノムワイド関連解析(GWAS) 方法 血圧GWASのこれまで

GWAS結果で何ができるか

- 遺伝的リスクスコアの臨床応用
- 薬剤標的探索
- 遺伝的成因の全体像の解明へ

<mark>疾患感受性遺伝子</mark>を見つけて病 気を解明する

- 疾患感受性遺伝子とは
 - DNA変異により、その病気の罹り易さ(感受性)が変わる遺伝子
- 見つける意義
 - 病気の仕組みの解明
 - 創薬ターゲットの探索
 - 個人の発症予測・至適治療法の選択(Precision medicine)
- そもそも存在するか?
 - 疾患感受性の素因は、遺伝と環境
 - 家族集積性から遺伝が占める割合(遺伝率)が分かる
 - 高血圧 30%
 - 身長 70%
- ・疾患感受性遺伝子をごっそり見つけよう→ゲノムワイド 関連解析

関連解析のコンセプト

疾患と一塩基多型(SNP)

- 生体階層構造の両端に離れている
- 統計的関連(相関)が、ヒトでの因果
 関係を示唆する
- 中間は、ブラックボックスとしてよい
- 関連解析
 - 疾患と関連するSNPを見つける
 - 関連SNPの位置にある遺伝子が、疾患
 感受性遺伝子のはず
 - ゲノムワイドに関連SNPsを探索するの が、ゲノムワイド関連解析(GWAS)
 - モデル生物実験に展開、逆に検証

ゲノムワイド関連解析 (GWAS)

- 目標
 - ・ゲノムワイドに、ありふれた(頻度 ≥1%) SNPs全てについて疾患との関連を検定する
- 計測
 - 各被験者で、代表的なSNPsをマイクロアレイで測定し、残りのSNPsの情報は推測
- 統計解析
 - SNPsは6x10⁶個あるが、染色体上で近傍のものは ド 相関している(連鎖不平衡)ので、統計的に独立 に なものは正味10⁶個 ↓
 - 約10⁶回の多重検定を行うので、擬陽性を抑えるために、有意水準を 0.05/10⁶ = 5x10⁻⁸と厳しくしないといけない。ゲノムワイド有意とよぶ

ゲノムワイドに⇒有厳→多プイ網る 準すののが 変ルが変わりましのが

GWASに必要なサンプルサイズ

- ・有意水準 5x10⁻⁸ のもとで、検出力を 80%
 にするには、40/R² 人必要
 - R²(決定係数):疾患・形質 y の分散のうち、SNP遺伝子型 x で説明される割合。これは相関係数の二乗。

SNPのSBPへの効果 [mm Hg]	R ² [%]	必要なサンプルサイズ [人数]
1	0.13	32,000
0.5	0.06	64,000
0.25	0.03	128,000

- F_{1.N-2}分布の非心度パラメータが40になればよい
- SNPの効果がb、アリルの頻度がpのとき、R² = 2 p(1-p)b²
- アリル頻度0.5、SBPの標準偏差を20 mmHgとした

(高)血圧の大規模GWAS

Study	Publication	年	スクリーニング症例数 [万人]				追試症例	ゲノムワイ	新規SNPs
Study	Fublication		欧米	東アジア	南アジア	アフリカ	数 [万人]	F 有意な SNPsの数	の数
wтссс	Nature 447:661	2007	0.5					0	0
Global BPgen	Nat Genet 41:666	2009	3				11	8	8
CHARGE	Nat Genet 41:677	2009	3				3	8	8
AGEN-BP	Nat Genet 43:531	2011		2			3	10	5
ICBP	Nature 478:103	2011	7				13	29	16
COGENT	Am J Hum Genet 93:545	2013				3	10	5	3
iGEN-BP	Nat Genet 47:1282	2015	4	3	3		22	35	12
CHD Exome+, ExomeBP, GoT2D	Nat Genet 48:1151	2016	17		3		16	51	30
CHARGE+ Exome	Nat Genet 48:1162	2016	12			2	18	70	31
Cardio- Metabochip	Nat Genet 48:1171	2016	20				14	66	17
GERA	Nat Genet 49:54	2017	9	0.7		0.3		75	39
UK Biobank	Nat Genet 49:403	2017	14				19	107	32
投稿中				13			16	92	19
UK Biobank	bioRxiv 198234		76				25	535	535

血圧関連遺伝子座は合計901箇所

東アジア人の大規模血圧GWAS

- 方法
 - 血圧値と高血圧罹患について、日本人13万人
 でGWASスクリーニング
 - 東アジア人5万人、欧米人11万人を加えて確認解析
- 結果
 - ゲノムワイド有意な血圧関連遺伝子座を計92
 箇所同定し、そのうち19箇所は新規だった
 - 血圧関連遺伝子座の全体のうちの5%において、
 東アジア人と欧米人でSNPの効果が有意に異なる
 - 原因変異は共通だが、効果が異なる場合
 - 一つの遺伝子座に、人種ごとに固有の原因変異がある場合

12q24では、 欧米人は*SH2B3*に、 東アジア人は*ALDH2*に、 固有の原因変異がある

血圧GWASで見つかった遺伝 子が発現している組織

- 2017年のUK Biobank 14万人スクリーニン グで新規に見つかっ た107遺伝子座(212 遺伝子)
- FANTOM5データで 発現している組織
 - 血管(59遺伝子)
 - 心・肺・腎・大動脈
 (17遺伝子)

[Nat Genet 49:403]

ヒト集団における血圧の遺伝的成因の全体=(狭義の)遺伝率、と考えると

• 遺伝率 = 形質分散を遺伝で説明できる割合

- 血縁者で推定した遺伝率
 - SBP 16% [PLoS Genet 2:e132]
 - 高血圧罹患 28% [Nat Genet 48:980]
- 血圧GWASでゲノムワイド有意だったSNPsの遺伝率
 - 個別SNPの効果は弱いが、901関連遺伝子座で合わせてSBP 11%
- ゲノムワイド有意に達しないものも含めた、SNPs全体の遺伝率
 - SBP 16% [Nat Genet 50:746]
 - 少しでもSBPに影響するSNPsは、全ゲノムの5%程度を占める
 - 高血圧罹患 32% [Nat Genet 48:980]
- ヒト高血圧の遺伝的成因は、個々には効果の微弱な遺伝的多型が、 相当多く組み合わさっている
- •稀な変異(頻度<1%)による成因は遺伝率としては僅か

前半のまとめ

- ゲノムワイド関連解析(GWAS)では、ヒト集団での、疾患等の表現型と一塩基多型(SNPs)の相関をゲノムワイドに検定することにより、表現型に影響する遺伝子座を探索する。
- 東アジア人18万人+欧米人11万人の血圧GWASにより、19箇所の新規関連遺伝子座を同定した。
- ・血圧関連遺伝子座は合計901箇所になった。
- ヒト高血圧の遺伝的成因は、個々には効果の微弱 な遺伝的多型が、相当多く組み合わさっている。

ゲノムワイド関連解析 (GWAS)方法

血圧GWASのこれまで

GWAS結果で何ができるか

- 遺伝的リスクスコアの臨床応用
- 薬剤標的探索
- 遺伝的成因の全体像の解明へ

遺伝的リスクスコア

- 各人のゲノムから疾患リスク(ここでは血圧予測)を計算
 - 血圧GWASで同定された901関連遺伝子座を使用
 - ・ 個々のSNPsの効果は弱く、SBPで0.15~1 mmHg程度
- ・遺伝的リスクスコアにより一般集団を10等分し、スコア 最大と最小のグループを比較

 ・顕著な効果とは言えないが、将来的に高血圧の発症予 測・予防への応用が期待される

ゲノムワイド多遺伝子リスク スコア(**GPS**)の臨床応用

 GPS ・ ゲノムワイドに全多型を用いる 	疾患	オッズ比 >3の人	
• GWASで観測された効果と連鎖不平	冠動脈疾患	8.0%	←家族性高
衡で重み付け	心房細動	6.1%	コレステ
 UK Biobank [Nat Genet (2018) 	2型糖尿病	3.5%	ロール皿症 (0.4%)
50:1219]	炎症性腸疾患	3.2%	より多い
• 29万人で検証	乳癌	1.5%	
• GPS検査により、罹患オッズ比>3と なる人の割合を計算	5疾患のいずれか	19.8%	
• 多くのありふれた疾患について、			

• 多くのありふれた疾患について、 GPSの臨床応用は技術的には可能 になってきた

editorial

Nat Genet 2018年9月号 論説

GPS for navigating healthcare

Precision genomic medicine is now technically feasible. Just as global positioning systems revolutionized the logistics of travel, so genome-wide polygenic risk scores (GPSs) now have the potential to inform our trajectories of health and to serve in the prevention and mitigation of many common and complex diseases. We welcome research into the implementation of—and equity of access to—genetic predictors and their integration into clinical and evidence-based medical practice.

GWASヒット遺伝子のどれが 薬剤標的として有望か

- 薬剤標的遺伝子
 - 単一遺伝子で血圧(のみ)に顕著な効果が欲しい
- 血圧GWASでゲノムワイド有意だったもの
 - 1000弱の関連遺伝子(座)
 - SNPの効果は弱く、SBPで0.15~1 mmHg程度
 - SNPの頻度は >5%
 - 進化の過程で残ってきたSNP→効果が弱いのは当然
- 薬剤標的として有望性
 - GWAS SNPの効果 ≠ その遺伝子の効果
 - → GWAS以外の指標が必要
 - 血圧値が極端な人が、その遺伝子に稀な変異を持つか
 - パスウェイ解析、遺伝子機能解析、モデル動物実験

LDL-CのGWASと薬剤標的遺 伝子

	Nearby genes	Best SNP	Effect size (SE) mg/dL	P-value	
	SORT1	rs629301	-5.65 (0.21)	9.7 E-	171
	APOE-C1-C2	rs4420638	7.14 (0.29)	8.7 E-	147
	LDLR	rs6511720	-6.99 (0.30)	4.3 E-	117
	APOB	rs1367117	4.05 (0.19)	4.5 E-	114
	ABCG5/8	rs4299376	2.75 (0.20)	1.7 E-	47
スタチン	HMGCR	rs12916	2.45 (0.18)	5.1 E-	45
	TRIB1	rs2954022	-1.84 (0.17)	2.6 E-	29
v9阳宝蓝	PCSK9	rs2479409	2.01 (0.22)	1.9 E-	28
	POA1-C3-A4-A5	rs964184	2.85 (0.27)	1.5 E-	26
	TIMD4	rs6882076	-1.67 (0.19)	1.9 E-	22
	ABO	rs649129	2.05 (0.21)	7.9 E-	22
	HPR	rs2000999	2.00 (0.22)	1.8 E-	22
	CILP2	rs10401969	-3.11 (0.38)	6.7 E-	22
	FADS1-2-3	rs174583	-1.71 (0.19)	1.2 E-	21
	TOP1	rs909802	1.41 (0.17)	3.2 E-	19

Nature 466:707, Table S2

GWAS SNPのP値が小さい (=ヒト集団での多様 性に大きく寄与)

≠ 薬剤標的遺伝子として有効

PCSK9

Omnigenic 仮説 Boyle, Li & Pritchard [Cell (2017) 169:1177]

- なぜこんなに多数の関連遺 伝子座があるのだろうか?
- 複雑疾患の遺伝率への寄与 は、むしろBが大きいのでは
 - A) その疾患の「コアパスウェイ」の遺伝子
 - B) 疾患に関与する細胞(e.g. 糖尿病のβ細胞)で発現し ている全遺伝子。Aとネッ トワークでつながるのでは
- ・どうやってコア遺伝子を見 分けるか
 - 低頻度で効果の強い(e.g. >1 mmHg?) 変異の探索

クロマチン状態 で染色体を領域

- 遍<活性化
- 疾患組織で は不活性
- 中間
 ライエヨ
 - 遍く不活性

後半のまとめ

- GWASで見つかったSNPsは個々の効果が弱いが、 それらを組み合わせたリスクスコア(GPS)により、 precision medicineとしての発症予測・予防への 応用が期待される。
- GWASで見つかった遺伝子の一部は薬剤標的遺伝 子になりうるが、どれが有望かはGWASだけから は分からず、他の手法が必要。
- 疾患感受性遺伝子が多数あるのは、コア遺伝子に加え、疾患関連組織で発現している全遺伝子が寄与しているからかもしれない(Omnigenic仮説)